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Abstract—Medical diagnosis through differential diagnosis is a 

matter of life and death that occurs every day.  This paper 

attempts to simulate differential diagnosis using a newly developed 

machine learning training and query algorithm utilizing a graph-

based model.  The paper also presents a method for creating 

synthetic medical records on which to train the model as well as 

the results of such training. 

Keywords—decision support system, differential diagnosis, 

graph, machine learning, healthcare 

I. INTRODUCTION 

A. Problem Space 

Medical diagnosis is a task that occurs every day and is 
critical to the life of those being diagnosed. Yet, though it is 
based on the straight-forward process of differential diagnosis, 
qualification to make medical diagnoses requires years of 
education and experience.  We propose to build a graph-based 
model capable of incorporating the large body of existing 
medical knowledge to automate the execution of differential 
diagnosis for medical decision support. 

Differential diagnosis is a systematic method to determine 
what is causing symptoms when multiple possibilities exist. A 
physician will collect the evidence and attempt to discover all 
the possible causes. Beginning with the most likely causes, he 
or she will run tests to rule out possible causes until a diagnosis 
is made. A clinical decision support (CDS) system should 
“provide clinicians or patients with clinical knowledge and 
patient-related information intelligently filtered or presented at 
appropriate times, to enhance patient care”  [1].  

The need for decision support is so profound that it is a 
requirement of the U.S. government’s Meaningful Use Phase 2 
requirements. The Health Information Technology for 
Economic and Clinical Health Act (HITECH), part of the 
American Recovery and Reinvestment Act of 2009,  
incentivizes medical providers to meet certain standards to 

collect Medicaid and Medicare payments [2]. Healthcare 
providers were first required to implement electronic health 
records (EHRs). After getting patient data into an electronic 
format, providers must show “meaningful use” of EHRs and 
“begin to realize the true potential . . . to improve the safety, 
quality, and efficiency of care” [3]. One aspect of meaningful 
use is to use decision support tools to avoid preventable mistakes 
and make more effective and efficient decisions. 

B. Motivation 

Quality decision support could potentially  have a significant 
positive impact on the lives of innumerable people.  Decision 
support can provide medical professionals in underprivileged 
portions of the world the benefit of aggregate experience far 
beyond their own.  Decision support can also create more 
consistent diagnoses providing the same outputs given the same 
inputs.  Decision support may also make diagnosis and treatment 
more efficient by simplifying complex decision processes and 
extrapolating out potentialities from tests required to treatments 
offered. 

The rest of the paper is organized as follows.  Section II 
describes related work.  Section III introduces a synthetic EHR 
generation system, a graph-based diagnostic Medical Decision 
Support System (MDSS) model generation algorithm, and a 
MDSS diagnosis algorithm based on the aforementioned model.  
Section IV provides results of validation of effectivity of the 
model.  Section V provides the results of validating the model, 
Section VI notes future work, and Section VII concludes the 
paper. 

 

II. RELATED WORK 

Ginsberg and Offensend wrote about applying decision 
theory to medical diagnosis in 1968, citing a case study where 
clinicians used a decision tree model to determine the best next 
course of action [4]. There was a demonstrable improvement in 
diagnosis and treatment when the theory was applied to the 
situation, but this decision tree was manually implemented. 
With the aid of computers, processing time is lessened and 
decisions can be made more quickly. 
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 LDS Hospital in Salt Lake City has developed a system 
called HELP (Health Evaluation through Logical Processing) 
that supports multiple CDS applications and has EHRs at the 
center of its design [5]. Clinical information is stored in a 
common database and contains thousands of medical logic 
modules (MLMs), which are rules developed by medical 
professionals in diverse domains to identify certain conditions 
and treatment options. The EHR information is in a coded 
format, while transcribed notes are kept as free text. Only the 
coded information is useful for decision support, but 
applications have been developed to code some of the free text 
entries. 

Vanderbilt University Medical Center (VUMC) has 
developed a CDS system using XML tags to organize the CDS 
rules. [6]. VUMC found their original CDS design was difficult 
to interpret and did not work well with outside systems and 
software. By taking their already coded documents, adding 
XML tags, and presenting diagnosis results on a web page, their 
CDS rules became more easily understandable.  VUMC’s 
schema is designed in such a way that it will be able to 
accommodate growth using XML’s support for extensibility.  
Because XML is more universal than the previous system, the 
CDS can interoperate with other systems developed outside of 
the Vanderbilt system. 

St. Jude Children’s Research Hospital uses an EHR system 
with three parts: the Open Clinical Foundation (OCF), 
PowerChart, and Discern Expert.  Open Clinical Foundation is 
an Oracle database that functions as a data warehouse and stores 
clinical and administrative information [7].  PowerChart is the 
user interface that displays the patient’s chart to caregivers,  
stores new test results, and allows the user to see new test results 
and to indicate which test results he or she reviewed.  Discern 
Expert is the CDS that is built on clinical rules and will generate 
alerts as well as monitor compliance to treatment plans [7]. 

Cheng et al. have developed a CDS specifically for use in 
Intensive Care Units called icuARM. Unlike the previously 
discussed systems, icuARM provides real-time decision 
support, which is important for the critically ill patients whose 
status may be constantly, rapidly changing [8].  The data for 
icuARM comes from a database with records of more than 
40,000 ICU stays of more than 30,000 patients and relies on 
Association Rules Mining to find connections among these 
thousands of records. The association rules method allows the 
system to generate the if-then rules with which it makes its 
recommendations. 

 Amato et al. propose Artificial Neural Networks (ANNs) as 
a method of decision support and diagnosis because of the 
extensively varied input the models can accept, their ability to 
find connections that are not readily apparent, and the speed of 
diagnosis [9]. Support Vector Machines (SVM) have been 
trained to produce models that aid in CDS. You et al. used SVM 
to build a model that helped clinicians determine the appropriate 
dosage for medications to individual patients [10]. Like the 
ANN, SVM is able to map complex connections that might not 
be readily apparent to clinicians.  Support Vector Machine 
models offer the added benefit of clearer execution compared to 
an ANN model.  

 Bayesian networks have also been proposed to build a CDS 
and diagnosis engine [11]. Because the medical field has an 
established ontology with clearly defined terms and concepts, 
those terms are used to build the basis of an ontology for the 
CDS. Symptoms are linked to pathologies, and the network 
gives a probability for each possible connection to the 
symptoms. As further observations are made and the results 
added to the algorithm, the probability of a given pathology 
changes, as do the possible next steps to be taken. 

 Our system differs from previous systems in its broad scope.  
The system is not limited in the number of features (signs and 

 

Fig 1. Model Schema 

 



 

 

symptoms) it considers or the number of diagnoses it can 
diagnose.  It is not limited by requiring either patient records or 
Subject Matter Expert (SME) knowledge, but can make use of 
both sources of information.  Additionally, our model provides 
the ability to integrate tests and treatments that may then be 
recommended to the user. 

Because we do not have access to EHRs to train our model, 
we developed a system to generate synthetic data that mimics 
real health records. Buczak et al. of Johns Hopkins University 
have proposed generating synthetic records to support research 
that is EHR-based when the researcher does not have access to 
real, anonymized medical records [12]. Buczak’s records were 
created to look at a population of people with a specific 
diagnosis, whereas our synthetic records mimic a population 
with varied diagnoses. 

 

III. A GRAPH-BASED DIAGNOSTIC MEDICAL DECISION SUPPORT 

SYSTEM MODEL GENERATION ALGORITHM 

A. Model Schema 

We chose to model differential diagnosis as a bipartite graph 
as seen in Figure 1.  A bipartite graph is a graph with two classes 
of nodes in which all edges only relating the two different node 
classes.  Edges never connect nodes of the same class.  In this 
graph, diagnoses will represent one class of node and symptoms1 
and signs2 a second class of node.  Edges in the graph will begin 
at a symptom or sign and end at a diagnosis the symptom or sign 
may represent.  All edges will be assigned a confidence 
representing the probability of someone with the symptom or 
sign having the diagnosis.  The confidence is represented as a 
probability distribution based on the value of the sign or 
symptom.  Throughout the model, signs and symptoms are 
treated similarly but tracked separately due to the difference in 
confidence between the two. 

The model also allows for the inclusion of test and treatment 
nodes as seen in Figure 1.  These will augment the bipartite 
graph by providing additional decision support when 
implemented. 

B. Model Training Algorithm 

The model training algorithm operates in two phases.  In 

phase one, the records in the training data set are ingested into 

an intermediate graph.  Each record is assumed to contain a 

single diagnosis and sign/symptom:value key:value pairs.  Each 

sign/symptom is instantiated in the graph as a node and an edge 

originating at the sign/symptom and ending at the diagnosis 

created with the value of the sign/symptom stored as an 

attribute of the edge.   

The intermediate graph facilitates the creation of a final 

graph that is the implementation of the diagnostic MDSS 

model.  Sign/symptom-diagnosis relationships that occur 

relatively infrequently are assumed to be incorrect relationships 

and removed from the data.  The nature of identifying the cutoff 

for removal of edges is currently an absolute value. However, 

the distribution of edges appears as the overlay of a long-tailed 

                                                           
1 Subjective evidence of disease or physical disturbance observed by the 
patient [16] 

distribution representing false sign/symptom-diagnosis 

relationships and a normal distribution representing true 

sign/symptom-diagnosis relationships. By calculating a 

discrete analog of a second derivative, finding the first local 

minima, and removing all relationships below it, we hope to 

improve the filtering of relationships. The remaining 

sign/symptom-diagnosis tuples are then processed.  The values 

of the edges in the intermediary graph between each 

sign/symptom and diagnosis tuple are modeled as either a 

Probability Density Function (PDF) or Cumulative Distribution 

Function (CDF) depending on their nature.  A single edge from 

the sign/symptom to the diagnosis is then stored in the final 

graph with a value of the chosen density function and its 

associated characteristics.  All density functions are normalized 

to one for the mean for PDFs and the maximum value for CDFs.  

While only a subset of functions were modeled in this step 

of model generation, a more robust system of distribution fitting 

is envisioned.  Such a system would attempt to fit multiple 

distributions to the value set, picking the distribution with the 

minimum error.  This improvement can be accomplished 

without affecting the operation of the rest of the model. 

Each edge also contains the number of values that it 

represents (synonymous with the number of edges between the 

tuple in the intermediate graph).  The in-degree of each 

diagnosis is also stored on the diagnosis node in the final graph 

for later use.  Finally, each node is labeled to reflect whether it 

is a sign, symptom, or diagnosis. Both the intermediary graph 

and the final graph are stored with a list of signs, symptoms, 

and diagnoses for later reference if necessary. 

The current model does not support streaming of 

incremental updates and must be rebuilt from the intermediary 

graph in totality.  With minimal effort, it is possible however to 

update only the subset of sign/symptom-diagnosis tuples for 

which additional data is available.  The intermediary graph 

however may be updated in an incremental fashion. 

C. Model Diagnostic Algorithm 

A query is initiated with a record comprised of a set of 

signs/symptoms and values.  All potential diagnoses (successor 

nodes in the graph model to the signs/symptoms within the 

record) are collected for analysis.  Should filtering of the 

potential diagnoses be desired, it may be implemented at this 

point to reduce the effort to diagnose the record.  However, the 

current model chooses not to do so. 

A score is developed for each remaining potential diagnosis 

based on the sum of the weighted scores of all signs/symptoms 

from the record with which the diagnosis has a relationship.  

The weights used are as follows: 

 The value of the probability function stored on the 

associated edge in the model graph for the given value 

of the sign/symptom. 

 The number of relationships between the 

sign/symptom and the diagnosis in the intermediate 

graph relative to the in-degree of the diagnosis node in 

the intermediate graph. 

2 An objective evidence of disease especially as observed and interpreted by 
the physician rather than by the patient or lay observer [17] 



 

 

 A relative weighting representing the confidence 

difference between signs and symptoms. 

 A static weighting associated with the sign or 

symptom representing its importance relative to other 

signs and symptoms.  For example, finger pain is less 

important than chest pain.  While in the test 

implementation all weights are set to 1, which allows 

a means of incorporating SME knowledge.  (The other 

means being through manually added edges). 

The sum of these weighted scores for a single diagnosis 

represents the scores for that diagnosis.  The diagnosis:score 

tuples represent the output of the diagnostic algorithm.  The 

scores reflect the relative confidence the system has that an 

individual diagnosis is correct.  The largest score is the 

diagnosis the system believes is most likely to be correct.  An 

example of output of the diagnostic algorithm may be found in 

Appendix 1. 

D. Technical Implementation 

The model and all algorithms are implemented in the 

Python programming language 3  stored in memory.  The 

networkx python module4 is used to represent graph objects 

while the scipy python module 5  is used to represent 

distributions. The implementation is accessed through standard 

web protocols either using a web browser on a computer or 

mobile device, or an application programming interface for 

machine-to-machine interactions.  The web interface is 

implemented using the python flask module6.  

The implementation should function correctly on any 

system that supports the Python language including Windows, 

Linux, and Apple OS X.  The primary constraint is expected to 

be system resources including random access memory, 

processing speed, and storage.  The implementation does not 

support parallel execution due to lack of support in the utilized 

modules.  Load-balancing implementations are likely possible 

but not explored. 

The use of an in-memory graph object represents a change 

from the Neo4j 7  graph database envisioned in the original 

conceptualization of the model. This is due to the storage of 

distribution objects on edges preventing serialization of the 

graph.  Future improvements may modify the implementation 

to store the distribution characteristics rather than the 

distribution itself.  This would allow serialization of graph 

attributes to facilitate storage of the graph in a graph database 

or flat file. 

E. Graphical User Interface Implementation 

The Graphical User Interface (GUI) is implemented in 

JavaScript (JS), Cascading Style Sheets (CSS), and Hypertext 

Markup Language (HTML).  It presents the user with a row in 

which to place a sign or symptom name and its value.  Buttons 

are provided to add and remove rows for additional diagnoses. 

A diagnose button is provided to execute the diagnosis.  The 

signs/symptoms are sent to the server, diagnosed, and the 

                                                           
3 https://www.python.org/ 
4 http://networkx.github.io/ 
5 http://docs.scipy.org/doc/scipy/reference/stats.html 

resulting diagnoses/scores returned.  The resulting diagnoses 

are presented to the user in a table in order of their score (from 

highest to lowest).  The scores are presented as a percentage 

difference from the top score such that the top score is 0 and the 

minimum possible score is -100%. 

The list of diagnoses is limited to the top five.  This is an 

arbitrary limited.  Additional diagnoses could be included at 

any set number or upon request through the GUI by the user. 

Diagnoses could additionally be paired with their 

prevalence in the general population, allowing a user to sort on 

the most common diagnoses and see their score relative to the 

top diagnoses.  Diagnoses could also be paired with their 

criticality so that they may be sorted by such, ensuring that 

critical but unlikely diagnoses are not overlooked. 

As part of a future update to the GUI, tests that may be run 

to differentiate between the diagnoses will be suggested and 

treatments to address the top diagnoses will be recommended. 

F. Application Programming Interface 

The model implementation exposes three functions through 

an application programming interface.  The first receives 

signs/symptoms as key:value pairs in a serialized JavaScript 

Object Notation (JSON) string.  The diagnoses and scores are 

returned in a similar format as a list of tuples in a JSON string.  

The ability to generate synthetic records is also exposed.  The 

number of records requested is passed through the API and the 

records are returned as a list of dictionaries in a JSON string.  

Finally, the ability to query the truth data is exposed.  A 

diagnosis may be passed to the API and a dictionary containing 

the truth diagnosis and the associated signs/symptoms as well 

as their values are returned as a JSON string. 

 

IV. MODEL GENERATION EXAMPLE USING SYNTHETIC DATA 

A. Synthetic Data Creation Methodology 

The model is designed to utilize EHRs for both training and 

diagnostic purposes.  As no EHR stores of sufficient quantity 

and quality were available within the existing constraints, a 

system for generating synthetic EHRs was created.  The system 

produces truth data as well as EHRs as described below. 

The synthetic data is based, in part, on static values 

identified through consultation with an SME. Multiple values 

necessary for generating the synthetic data were identified.  See 

Appendix 2 for a complete list of static values. 

1) Synthetic Truth Data Creation 
Generation of synthetic truth data begins with the creation of 

the desired number of signs, symptoms, and diagnoses.  Each 
sign/symptom is designated as either a continuous or discrete 
distribution for its values with a given probability and then 
randomly assigned one of five distribution types: 

 Continuous 

o Gaussian 

6 http://flask.pocoo.org/ 
7 http://neo4j.com/ [15] 



 

 

o Gaussian Cumulative Density Function 

 Discrete 

o 10 step – (i.e., What is your pain on a scale from 
1 to 10?) 

o 3 step – yes = 1, maybe = .5, no = -1 

o 2 step – yes/no 

Once distributions have been assigned to the signs and 
symptoms, each diagnosis is assigned a number of signs and 
symptoms based on a Gaussian distribution.  The number of 
signs/symptoms designated are picked from the pool of signs 
and symptoms and assigned to that diagnosis along with an 
associated value picked from a pool of potential values.  The 
assignment of signs/symptoms to diagnoses may be preferential 
in nature with some signs/symptoms being picked significantly 
more often than others.  For our analysis, signs were picked 
preferentially and symptoms were not.  A synthetic truth data 
example may be found in Appendix 1. 

2) Synthetic Diagnostic Records Creation 
Once a truth data set has been generated, any number of 

EHRs may be generated from it.  For each requested EHR, a 
diagnosis is picked.  A number of signs/symptoms is picked 
based on the defined distributions of signs and symptoms for 
EHRs.  Based on the defined probabilities, the signs and 
symptoms are either chosen from those associated with the 
diagnosis or from the set of all signs/symptoms.  Once signs and 
symptoms have been assigned, their values are picked from their 
value distribution such that the defined percentage of 
signs/symptoms are outliers.  This is repeated until the requested 
number of EHRs has been generated.  An example of a synthetic 
record may be found in Appendix 1. 

 

V. MODEL VALIDATION 

A. Model Training Methodology 

To validate the functionality of our model, we began by 

generating truth data based on the ground-truth variables found 

in Appendix 2.  We then generated multiple sets of synthetic 

records with sizes from 100,000 to 5,000,000.  All records were 

based on the same truth data and were additive (i.e., the 200,000 

record set included the 100,000 record set records plus 100,000 

additional new records).  A new intermediate graph and final 

model graph were then created off of each set of training 

records.  

B. Model Validation Methodology 

For each model generated in the above training 

methodology, we generated 1000 new and unique test records 

that were only used to assess that specific model.  The model 

was used to diagnose all 1000 records and the results compared 

to the correct diagnosis provided by the record generation 

algorithm.  For each record set, four values were captured: 

 Was the correct diagnosis the highest scoring 

diagnosis 

 Was the correct diagnosis in the top five highest-

scoring diagnoses 

 What was the correct diagnosis score relative to the 

top scoring diagnosis 

 What was the position in the ordered list of diagnoses 

of the correct diagnosis 

 

C. Results 

As seen in Figure 2, the model improves significantly with 

additional training records until roughly 800,000.  At this point, 

it plateaus with the correct diagnosis being the top scoring in 

roughly 65% of test records and in the top five diagnoses in 

85% of records.  At 800,000 training records, the correct 

diagnosis is in the top 10 scoring diagnoses over 90% of the 

time.  All models trained with greater than 600,000 records 

contain the true diagnosis in the top 20 90%+ of the time with 

the greatest being 800,000 at 94.1%. 

To analyze all diagnoses, not just those in the list of the top 

five, Figure 4 provides histograms of the location of the top 

diagnosis in a list of all potential diagnoses sorted by score for 

various levels of training.  Subplots 100,000 and 200,000 show 

additional records in the first bin as true diagnoses not in the 

potential diagnoses list received a value of -1.  Overall, we can 

see a clear trend.  After 600,000 training records, the true 

diagnosis is in the top bin the vast majority of the time.  Figure 

5 provides an expansion of all but the first two subplots of 

Figure 4.  In it, we can see the vast majority of records 

containing the true diagnosis in the top 20 scores. 

In Figure 6 we look at the difference between the top score 

and the true diagnosis score.  After the model becomes 

accurately trained, the distribution of percent difference of 

scores between the top score and the true diagnosis score is 

fairly evenly distributed.  The spike in the first bin is due to the 

true diagnosis being the top-scoring diagnosis and the 

difference, therefore, being zero. 

This even distribution does not affect the ranking of the true 

diagnosis though, as can be inferred from Figures 4 and 5 and 

seen in Figure 7.  Regardless of a large relative difference, the 
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top score still appears near the top of scores of potential 

diagnoses. 

D. Analysis of Results 

It appears that the model succeeds in predicting the correct 

diagnosis at the top or near the top of list of potential diagnoses 

a significant amount of the time.  While not accurate enough to 

make definitive final diagnoses, it does appear accurate enough 

to assist in multiple areas: 

 provide support to those making medical diagnoses 

 suggest treatments based on the top 20 scoring 

diagnoses 

 suggest tests that would differentiate among the top 20 

scoring diagnoses 

One concern is the number of records necessary for training.  

The model clearly benefits from additional records until some 

point between 800,000 and 1,000,000 records.  This is 

significantly more than a single medical practitioner will see in 

a lifetime.  As such, the model will require a store of EMRs that 

span multiple medical practitioners over a long time period. 

 

VI. FUTURE WORK 

This model is the first step in a system for differential 

diagnosis through machine assistance and can be improved in 

multiple ways to yield improvements in results. 

We intend to implement two additional types of nodes in the 

graph model: tests and treatments.  Tests will represent 

anything that can produce a sign. Edges will be added from tests 

to signs indicating that the test produces a value for the sign. 

The diagnosis algorithm will then be updated to recommend 

tests that will produce signs that may differentiate between the 

top scoring diagnoses. 

Treatments are actions that can improve medical outcomes. 

Edges will be added to the model from a treatment to diagnoses 

that are affected by the treatment, either positively or 

negatively. The edge will carry an ‘impact’ property that 

indicates both the type of impact (positive or negative) and 

magnitude of impact. The diagnosis algorithm will then provide 

potential treatments prioritized by their potential positive 

impact on the top diagnoses while minimizing their negative 

impact.  The addition of these edges does not affect the bipartite 

nature of the graph with respect to diagnosis and symptom/sign 

nodes.  

As outlined above, allowing the user to expand the number 

of potential diagnoses she sees and to sort the data by how 

common the diagnosis is in the population and/or the severity 

of the diagnosis’ impact provides another opportunity for 

enhancing the model  

There are several other theories and models that could 

benefit the MDSS. Analysis of Completing Hypotheses [13] 

may be useful to improve the diagnostic process. Replacing the 

graph layer between the signs/symptoms and the diagnosis with 

another machine learning model such as a neural network may 

also improve its accuracy. The method for fitting distributions 

to sign/symptom values could be replaced with a more robust 

model able to more accurately match a larger number of 

distributions.  The method for estimation of scale of the 

distribution of edges in the intermediate graph could be 

improved to provide a more accurate cutoff between true and 

false sign/symptom->diagnosis relationships.   

While the diagnostic algorithm is based on relative 

confidence, a logical next step would be to allow 

signs/symptoms to be marked as required in the input.  This 

would eliminate any diagnosis without an existing relationship 

to the sign/symptom.  While this may cause incorrect 

information to unfairly influence the diagnosis, it would 

provide a means of firmly basing a diagnosis off of a high-

confidence sign or symptom. 

Finally, by aligning the model to standard medical 

ontologies such as ICD-10 classifications [14], greater 

interoperability may be obtained. While this does not affect the 

prediction capabilities of the model, it would facilitate 

integration of the model into other systems.  Simply training the 

model on actual EHRs may produce the desired effect on 

support for integration as the EHRs would inherently contain 

ICD-10 records. 

VII. CONCLUSION 

We successfully created a model and user interface for 
providing clinical decision support and aiding in differential 
diagnosis. The web interface makes the system accessible to 
professionals around the world in a user-friendly manner. There 
are many improvements to be made; however, this represents a 
significant step forward in differential diagnosis through 
machine assistance; an accomplishment of significant potential 
to benefit humanity. 
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FIG. 3 EXAMPLE MODEL 

 



 

 

Figure 4 



 

 

Figure 5 

 
  



 

 

Figure 6 

 
  



 

 

Figure 7 

 
  



 

 

TABLE 1.     EXAMPLE MODEL EDGE TABLE 

Source Destination Impact Confidence 

Sign3 DiagnosisB  f(x) = .95*x 

Sign3 DiagnosisA  f(x) = .86*x 

Sign9 DiagnosisC  f(x) = 1*x 

Treatment8 DiagnosisC 1  

Symptom2 DiagnosisA  f(x) = 1|x==True 

Symptom1 DiagnosisA  f(x) = 1/(1*sqrt(2(pi))*e^-1((x-0)^2/(2*1^2)) 

Treatment10 DiagnosisB -1  

Symptom5 DiagnosisC  f(x) = 1/x^2 

Symptom5 DiagnosisB  f(x) = x 

Symptom4 DiagnosisC  f(x) = .95|x==True 

Symptom4 DiagnosisB  f(x) = 4^x*e^-4/x! 

Symptom4 DiagnosisA  f(x) = x 

Symptom8 DiagnosisC  f(x) = x/n 

Test1 Sign3  f(x) = x 

Test3 Sign3  f(x) = x 

Test2 Sign3  f(x) = x 

Test5 Sign3  f(x) = x 

Test4 Sign3  f(x) = x 

Test7 Sign9  f(x) = x 

Test6 Sign9  f(x) = x 

Treatment6 DiagnosisC 1  

Test8 Sign9  f(x) = x 

Treatment4 DiagnosisB 1  

Treatment4 DiagnosisA -1  

Treatment5 DiagnosisC 1  

Treatment5 DiagnosisB 1  

Treatment2 DiagnosisC -1  

Treatment2 DiagnosisB 1  

Treatment2 DiagnosisA 1  

Treatment3 DiagnosisA 1  

Treatment1 DiagnosisA 1  

Symptom7 DiagnosisB  f(x) = x 

 



 

 

APPENDIX 1 

Example Synthetic Truth Data: 

{'diagnosis_6827': {'signs': {'sign_1534': {'factors': {'inverse': True}, 

                                            'function': 'bool', 

                                            'function_type': 'categorical'}, 

                              'sign_1939': {'factors': {'inverse': True}, 

                                            'function': 'bool', 

                                            'function_type': 'categorical'}, 

                              'sign_2345': {'factors': {'inverse': False}, 

                                            'function': 'bool', 

                                            'function_type': 'categorical'}, 

                              'sign_59': {'factors': {'levels': [0.1, 

                                                                 0.2, 

                                                                 0.3, 

                                                                 0.4, 

                                                                 0.5, 

                                                                 0.6, 

                                                                 0.7, 

                                                                 0.8, 

                                                                 0.9, 

                                                                 1]}, 

                                          'function': 'step_10', 

                                          'function_type': 'categorical'}, 

                              'sign_982': {'factors': {'levels': [1, 

                                                                  0.9, 

                                                                  0.8, 

                                                                  0.7, 

                                                                  0.6, 

                                                                  0.5, 

                                                                  0.4, 

                                                                  0.3, 

                                                                  0.2, 

                                                                  0.1]}, 

                                           'function': 'step_10', 

                                           'function_type': 'categorical'}}, 

                    'symptoms': {'symptom_112': {'factors': {'inverse': True}, 

                                                 'function': 'bool', 

                                                 'function_type': 'categorical'}, 

                                 'symptom_134': {'factors': {'inverse': True}, 

                                                 'function': 'bool', 

                                                 'function_type': 'categorical'}, 

                                 'symptom_25': {'factors': {'levels': [1, 

                                                                       0.5, 

                                                                       -1]}, 

                                                'function': 'step_3', 

                                                'function_type': 'categorical'}, 

                                 'symptom_49': {'factors': {'levels': [1, 

                                                                       0.5, 

                                                                       -1]}, 

                                                'function': 'step_3', 

                                                'function_type': 'categorical'}, 

                                 'symptom_78': {'factors': {'levels': [0.1, 

                                                                       0.2, 

                                                                       0.3, 

                                                                       0.4, 

                                                                       0.5, 

                                                                       0.6, 



 

 

                                                                       0.7, 

                                                                       0.8, 

                                                                       0.9, 

                                                                       1]}, 

                                                'function': 'step_10', 

                                                'function_type': 'categorical'}, 

                                 'symptom_89': {'factors': {'levels': [1, 

                                                                       0.5, 

                                                                       -1]}, 

                                                'function': 'step_3', 

                                                'function_type': 'categorical'}, 

                                 'symptom_97': {'factors': {'levels': [0.1, 

                                                                       0.2, 

                                                                       0.3, 

                                                                       0.4, 

                                                                       0.5, 

                                                                       0.6, 

                                                                       0.7, 

                                                                       0.8, 

                                                                       0.9, 

                                                                       1]}, 

                                                'function': 'step_10', 

                                                'function_type': 'categorical'}}}} 

 

Example Synthetic Record: 

[{'diagnosis': 'diagnosis_255', 

  'signs': {'sign_1404': 0.1}, 

  'symptoms': {'symptom_11': 0.5, 

               'symptom_24': 0.3, 

               'symptom_72': 1, 

               'symptom_80': 0}}, 

 {'diagnosis': 'diagnosis_4789', 

  'signs': {'sign_1071': 0, 'sign_2259': 0.4}, 

  'symptoms': {'symptom_12': 1, 

               'symptom_135': 0.5, 

               'symptom_34': 0, 

               'symptom_40': -0.22229441461509403, 

               'symptom_5': 0.20000000000000001, 

               'symptom_96': 0}}, 

 {'diagnosis': 'diagnosis_4124', 

  'signs': {'sign_382': 0.8, 'sign_584': 0.5}, 

  'symptoms': {'symptom_30': 1, 

               'symptom_43': 0.1, 

               'symptom_46': 1, 

               'symptom_55': 0.5}}, 

 {'diagnosis': 'diagnosis_8354', 

  'signs': {'sign_1632': 0.2, 'sign_2924': 0.8}, 

  'symptoms': {'symptom_130': 1, 

               'symptom_33': 0, 

               'symptom_54': 1, 

               'symptom_69': 0, 

               'symptom_96': 1}}] 

 

Example Diagnostic Result: 

{'diagnosis_2287': 0.03583184375312342, 

 'diagnosis_2497': 0.03916503852085583, 

 'diagnosis_2635': 0.86711857628206257, 



 

 

 'diagnosis_2789': 0.75093602194361631, 

 'diagnosis_2964': 0.97376952416702212, 

 'diagnosis_3043': 0.60280970543672796, 

 'diagnosis_357': 0.046664726748253761, 

 'diagnosis_3643': 1.3094644335827743, 

 'diagnosis_4580': 36.165387964903829, 

 'diagnosis_4710': 1.9590948408926703, 

 'diagnosis_4983': 1.6087705898302658, 

 'diagnosis_520': 0.039720570982144564, 

 'diagnosis_5431': 8.0418490804417981, 

 'diagnosis_5794': 0.026088659047444063, 

 'diagnosis_7509': 0.664636341891777, 

 'diagnosis_7676': 0.94285620593949759, 

 'diagnosis_7791': 0.72646297834682605, 

 'diagnosis_8460': 0.64917968277801474, 

 'diagnosis_8674': 1.755022461633017, 

 'diagnosis_8680': 0.040831635904722031 

 ...}  



 

 

Appendix 2 

 

 Number of diagnoses: 10,000 

 Number of signs: 3,00 

 Number of symptoms: 150 

 Mean signs per diagnosis: 5.5 

o The signs per diagnosis defines a distribution of how many signs each diagnosis will have in the truth data 

 Standard Deviation (SD) of signs per diagnosis: 0.5 

 Mean symptoms per diagnosis: 7 

o The symptoms per diagnosis defines a distribution of how many symptoms each diagnosis will have in the 

truth data 

 SD of symptoms per diagnosis: 0.5 

 Percent of signs represented by continuous functions: 5% 

o An example of a continuous sign would be patient temperature 

 Percent of signs represented by discrete functions: 95% 

o An example of a discrete function would be testing positive or negative on a given test 

 Percent of symptoms represented by continuous functions: 5% 

o An example of a continuous symptom may be how long the patient had been feeling ill 

 Percent of symptoms represented by discrete functions: 95% 

o An example of a discrete function would be a patient’s opinion of how bad their pain was on a scale of one to 

ten 

 Preferential attachment of signs: true 

o Represents whether all signs will be equally likely or whether some signs occur very commonly and some 

occur rarely 

 Preferential attachment of symptoms: false 

o Represents whether all symptoms will be equally likely or whether some symptoms occur very commonly and 

some occur rarely 

 Mean signs per record: 2.5 

o The signs per record defines a distribution of how many signs each record will have in the synthetic records 

 SD of signs per record: 0.3 

 Mean symptoms per record:  

o The symptoms per record defines a distribution of how many symptoms each record will have in the synthetic 

records 

 Percentage of false signs: 8% 

o The percentage of false signs represents two values.  The first is the likelihood that a sign in a record will be 

drawn from all signs rather than just those associated with the record’s correct diagnosis in the truth data.  It 

also represents the likelihood that the value for the sign will be an outlier in the distribution that represents the 

values for the sign. 

 Percentage of false symptoms: 20% 

o The percentage of false symptoms represents two values.  The first is the likelihood that a symptom in a record 

will be drawn from all symptoms rather than just those associated with the record’s correct diagnosis in the 

truth data.  It also represents the likelihood that the value for the symptom will be an outlier in the distribution 

that represents the values for the symptom. 


